NISKOTEMPERATUROWE KATALIZATORY PROCESÓW OCHRONY POWIETRZA

Jerzy STRASZKO, Wiesław PARUS, Wojciech PATERKOWSKI Zachodniopomorski Uniwersytet Technologiczny, al. Piastów 42, 71-065 Szczecin

STRESZCZENIE

Opisano niskotemperaturowe katalizatory procesu selektywnej redukcji katalitycznej NO_x (SCRNO_x) i procesów spalania lotnych związków organicznych (LZO). Masy aktywne stanowią kompozyty zawierające MnO₂, Fe₂O₃, V₂O₅, MoO₃, oraz TiO₂ (anataz). Otrzymano je metodą współstrącania i metodą zol-żel. Aktywność katalizatorów przebadano w instalacjach przepływowych z mikroreaktorami rurowymi. Redukcja NO_x przy obciążeniach 40-180 m³/(kg h) przebiegała w zakresie temperatur 100-480°C, a spalanie LZO (aceton, octan butylu, toluen, ksylen) – w zakresie temperatur 140-250°C.

1. Wstęp

Selektywna katalityczna redukcja NO_x oraz katalityczne spalanie LZO należą do podstawowych technologii oczyszczania gazów odlotowych [1]. Początkowo stosowano głównie katalizatory platynowe. Wtedy wykazywały one wyższą aktywność od katalizatorów tlenkowych. W ostatnich latach, w licznych ośrodkach prowadzone są badania dotyczące otrzymywania katalizatorów niskotemperaturowych na bazie tlenków metali przejściowych. Duże zainteresowanie budzą kompozyty zawierające MnO_2 , CuO, Fe₂O₃, V₂O₅ i TiO₂ (anataz). Kontakty takie mogą być stosowane zarówno w procesach SCRNO_x jak i spalania LZO. Należy dodać, że katalizatory niskotemperaturowe mają też ważne znaczenie dla rozwoju technologii plazmowo-katalitycznych [2]. Niskotemperaturowe katalizatory tlenkowe otrzymuje się metodą impregnacji nośnika, metodą współstrącania i metodą zol-żel.

W wypadku procesów SCRNO_x katalizatory tlenkowe pracują w zakresie temperatur 110-260°C. Otrzymuje się je na bazie MnO₂ [3, 4]. Stosuje się mieszaniny z innymi tlenkami, w szczególności z Fe₂O₃ [5] i TiO₂ [6, 7]. Początkowo katalizatory manganowo-tytanowe otrzymywano metodą impregnacji i metodą współstrącania. Ostatnio katalizatory te otrzymuje się także metodą zol-żel [3, 7].

W pracach [8, 9] opisano katalizatory manganowo-żelazowe, stanowiące mieszaniny MnO_2 i Fe_2O_3 . Katalizatory te najczęściej otrzymuje się metodą współstrącania i metodą zolżel. Aktywność ich w warunkach laboratoryjnych wyznaczano, stosując przepływowe mikroreaktory rurowe.

Szczególnie interesujące, ze względów aplikacyjnych, są katalizatory zawierające V_2O_5 lub także MoO₃, osadzone na TiO₂ (anataz). Pracują one skutecznie w zakresie temperatur 200-400°C. W odpowiednich warunkach (powyżej 300°C) są też odporne na działanie tlenków siarki [10, 11]. Dodatkową ich zaletą jest duża trwałość. Zachowują one wysoką aktywność przez co najmniej 5 lat pracy. Należy dodać, że TiO₂ wpływa na selektywność procesu (na samym V₂O₅, bez dodatku TiO₂ przebiegają reakcje uboczne, np. utlenianie NH₃). Obecnie katalizatory V₂O₃/TiO₂ są stosowane w instalacjach przemysłowych procesu SCRNO_x.

Katalizatory na bazie MnO_2 , CuO, Fe₂O₃, V₂O₅ i TiO₂ są ważne także dla procesów katalitycznego spalania LZO. Katalizatory manganowo-miedziowe (hopkality) i manganowo-żelazowe wykazują wysoką aktywność w procesach spalania różnych LZO w niskich

temperaturach 200-400°C [12-15]. W pracy [16] badano aktywność katalizatorów MnO₂-CuO osadzonych na nośnikach o wysokiej powierzchnia właściwej. Trzeba dodać, że aktywność katalizatorów MnO₂-CuO silnie zależy od temperatury kalcynacji. W niższej temperaturze tlenki te występują w postaci cząstek nanometrycznych i takie układy wykazują wysoką aktywność. Jako nośniki stosowano Al₂O₃ [17], TiO₂[18-20] i ZrO₂ [20]. W instalacjach przemysłowych obecnie są stosowane katalizatory manganowo-miedziowe (hopkality) i manganowo-żelazowe.

2. Część doświadczalna

2.1. Materiały i metody

Jako prekursory stosowano $Mn(NO_3)_2 4H_2O$; $Fe(NO_3)_3 9H_2O i Cu(NO_3)_2 3H_2O$ firmy Chempur; NH_4VO_3 , $(NH_4)_6Mo_7O_{24} 4H_2O$, $Ti(O(CH_2)_2CH_3)_4$ i stężony roztwór NH_4OH firmy Aldrich; TiO_2 firmy POCH S.A oraz suche powietrze klasy 5.0 firmy Messer.

Strukturę fazową identyfikowano metodą XRD. Stosowano aparat X Pert firmy PANanalitical B.V. z lampą miedziową, przy napięciu prądu 35 kV i natężeniu 30 mA. Obróbkę i analizę dyfraktogramów XRD prowadzono za pomocą programu komputerowego X Pert HighScore Software 1.0, z wbudowaną kartoteką wzorców ICDD. Pomiary termograwimetryczne przeprowadzono w aparacie SDT Q600 firmy TA Instrument. Produkty lotne zachodzących przemian oznaczano metodą spektrometrii mas. Stosowano aparat firmy Pfeifer Vacuum typu Thermostar GSD 301. Stężenia spalanych domieszek oznaczano chromatograficznie w aparacie Chrom 5 produkcji czeskiej.

2.2. Otrzymywanie katalizatorów

Katalizatory zawierające mieszaniny MnO_2 , CuO i Fe_2O_3 otrzymano metodą współstraącania. Natomiast katalizatory zawierające V_2O_5 , MoO_3 i TiO_2 (anataz) otrzymano metodą zol-żel.

2.2.1. Metoda współstrącania

Sposób ten opisano na przykładzie otrzymywania katalizatora o składzie 60% mas. $MnO_2 + 40\%$ mas. CuO. 86,33 g $Mn(NO_3)_2$ 4H₂O i 59,24 g Cu(NO₃)₂ 3H₂O rozpuszczono w 1000 dm³ dejonizowanej wody i ogrzano mieszając do 80°C. W tej temperaturze strącano wodorotlenki manganu i żelaza za pomocą 10% roztworu NaOH. Roztwór NaOH dodawano małymi porcjami. Strącanie trwało około 2 h. Rejestrowano w czasie strącania pH mieszaniny. Strącanie wodorotlenkiem sodu prowadzono do pH = 7,8. Potem dodano niewielką ilość 20% roztworu Na₂CO₃ (pH = 9). Po strąceniu wodorotlenków osad stabilizowano, mieszając, w temperaturze 80°C przez 2 h. Potem układ ochłodzono do temperatury pokojowej. W tej temperaturze najpierw osad przemyto przez dwukrotną dekantację, a potem oddzielono i przemywano na sączku. Próbkę wysuszono w 100°C. Suchy proszek kalcynowano w powietrzu w 400°C przez 1 h. Proszek po kalcynacji roztarto, dodano 0,5% mas. grafitu i prasując formowano tabletki.

2.2.2. Metoda zol-żel

Katalizatory wanadowo-tytanowe otrzymano metodą zol-żel. Jako prekursory stosowano Ti(O(CH)₂CH₃)₄ i NH₄VO₃. Pierwszym etapem była homogenizacja mieszaniny,

drugim hydroliza Ti(O(CH)₂CH₃)₄, a trzecim kondensacja. Sposób preparacji opisano na przykładzie otrzymywania katalizatora płaszczowo-rdzeniowego (na ziarnoTiO₂ naniesiono nanometryczny TiO₂). 4,4 g TiO₂ (anataz) zmieszano z 0,878 g NH₄VO₃. Próbkę roztarto w moździerzu agatowym, dodano 20 cm³alkoholu etylowego. Po homogenizacji dodano 1,78 g Ti(O(CH)₂CH₃)₄ (po przeliczeniu odpowiada to 0,5 g TiO₂). Po wymieszaniu dodano 10 cm³ stężonego roztworu NH₄OH (katalizator procesu hydrolizy Ti(O(CH)₂CH₃)₄). Hydrolizę prowadzono w temperaturze pokojowej przez 24 h. Po hydrolizie składniki lotne odparowano na łaźni olejowej. Suchy proszek kalcynowano w powietrzu w 400°C przez 1 h. Do proszku po kalcynacji dodano 0,5% mas. grafitu i prasując tabletkowano.

2.3. Badania aktywności katalizatorów

Aktywność katalizatorów w procesie SCRNO_x i w procesach spalania LZO wyznaczono w instalacjach z przepływowymi mikroreaktorami rurowymi. Stosowano 0,5 g katalizatora o wielkości cząstek 0,102-0,120 mm. Przepływ gazów zmieniano w zakresie 20-100 dm³/h. W wypadku redukcji NO_x mieszaninę gazów przygotowywano dozując NO do strumienia powietrza zawierającego określoną ilość NH₃. Oznaczano stężenia NO_x na włocie i wyłocie z rektora. Znając te stężenia obliczano stopień przemiany.

W wypadku spalania LZO, mieszaninę uzyskiwano mieszając część strumienia powietrza nasyconego związkiem organicznym w kolumnie, ze strumieniem głównym Stężenia domieszek oznaczano chromatograficznie. Metodykę pomiarów opisano w pracy [21].

3. Wyniki i dyskusja

3.1. Warunki kalcynacji i struktura katalizatorów

Warunki kalcynacji mas aktywnych ustalono na podstawie pomiarów termograwimetrycznych, przeprowadzonych w suchym powietrzu klasy 5.0 firmy Messer. Stosowano naważki rzędu 20 mg. Próbki ogrzewano z szybkością 10 K/min. Rejestrowano w czasie temperaturę próbki, funkcje TG , DTG, HT i widma masowe produktów gazowych. Na rys. 1 przedstawiono przykładowe wyniki uzyskane podczas kalcynacji próbki katalizatora o składzie 60% mas. $MnO_2 + 40\%$ mas. CuO, wysuszonej w 110°C.

Rys. 1. Wykresy TG, DTG i HF. Kalcynacja w suchym powietrzu próbki o składzie 60% mas. MnO₂ + 40% mas. CuO

Na rys. 2 przedstawiono wykres DTG i wykresy widm masowych produktów gazowych: H_2O (m/e = 18), CO_2 (m/e = 44), NO_2 (m/e = 46) i dla kontroli wykres widma masowego C (m/e = 12).

Rys. 2. Wykres DTG i wykresy widm masowych produktów gazowych. Kalcynacja w suchym powietrzu próbki o składzie 60% mas. MnO₂ + 40% mas. CuO

Podczas kalcynacji próbki wysuszonej w 110° C wydzielała się niewielka ilość H₂O. Na wykresie widma masowego CO₂ występują dwa piki. Pierwszy przypisano desorpcji CO₂, pochłoniętego podczas strącania osadów, a drugi rozkładowi Na₂CO₃ dodawanego w ostatnim stadium wytrącania wodorotlenków. W tym zakresie temperatur wydzielała się także niewielka ilość NO₂ w wyniku rozkładu nie wypłukanych azotanów.

Z wykresu TG widać, że do temperatury rzędu 220°C masa próbki zmniejszała się, w zakresie 220-310°C wzrastała, a potem malała. Wzrost masy próbki przypisano utlenianiu tlenków o niższych wartościowościach, powstających podczas rozkładu wodorotlenków (procesy egzotermiczne, wzrost wartości funkcji HF). Przy dalszym wygrzewaniu w 400°C masa próbki nie ulegała zmianie. Temperatura ta jest odpowiednia dla kalcynacji otrzymywanych mas aktywnych. Dotyczy to także katalizatorów wanadowo- tytanowych oraz wanadowo-molibdenowo-tytanowych. Podczas ogrzewania w temperaturze t $\leq 400^{\circ}C$ (NH₄)₆Mo₇O₂₄ 4H₂O rozkłada się do MoO₃ [22], a NH₄VO₃ do V₂O₅ [23].

Skład fazowy próbek katalizatorów po kalcynacji określano metodą XRD. Na rys. 3 pokazano dla przykładu dyfraktogram XRD próbki o składzie 60% mas. $MnO_2+40\%$ mas. CuO, po kalcynacji w suchym powietrzu w 400°C przez 1h.

Rys. 3. Dyfraktogram XRD próbki katalizatora o składzie 60% mas. MnO₂ + 40% mas. CuO po kalcynacji w suchym powietrzu

Próbka miała strukturę amorficzną, z niewielką domieszką krystalitów $Cu_{1,5}Mn_{1,5}O_4$ (ICDD card 01-070-0262). W postaci amorficznej występowały także inne katalizatory, otrzymane metodą współstrącania.

Na rys. 4 przedstawiono dyfraktogram XRD próbki katalizatora płaszczowordzeniowego V_2O_5/TiO_2 o składzie 11,3% mas. V_2O_2 + 88,7% mas. TiO₂, po kalcynacji w suchym powietrzu w 400°C przez 1h.

Rys. 4. Dyfraktogram XRD próbki katalizatora V₂O₅/TiO₂ po kalcynacji w suchym powietrzu w 400°C przez 1h

Prostymi wyróżniono niskie piki V_2O_5 (ICDD card 00 009 0387). Wysokie piki dotyczą anatazu (ICDD card 01 084 1286).

- 3.2 Badania aktywności katalizatorów
- 3.2.1. Selektywna katalityczna redukcja NO_x

Badania aktywności otrzymanych katalizatorów przeprowadzono stosując przepływowy mikroreaktor rurowy. Stosowano 0,5 g katalizatora o wielkości ziaren 0,102-0,120 mm.

Zawartość NH₃ na wlocie do rektora wynosiła ok. 1 mol NH₃ na mol NO_x. W tabeli 1 podano dla przykładu wyniki uzyskane na katalizatorze o składzie 60%MnO₂ + 40%Fe₂O₃.

Obciążenie, m ³ /kgh; c _{NOx} , ppm					
53,4		106,7		178	
1370≤c _{NOx} ≤4058		$2056 \le c_{NOx} \le 3007$		$1477 \le c_{NOx} \le 2532$	
t [⁰ C]	α(T) [-]	t [⁰ C]	α(T) [-]	t [⁰ C]	α(T) [-]
110	1	105	0,937	115	0,607
120	1	115	0,964	120	0,609
130	1	125	1	140	0,714
140	1	133	1	150	0,758
150	1	143	1	160	0,803
160	1	150	1	170	0,917
180	1	160	1	180	1
200	1	170	1	190	1
220	1	180	1		
240	1	185	1		
270	1				
300	1				
330	1				

Tabela 1. Wyniki pomiarów redukcji NO_x na katalizatorze 60%MnO₂+40%Fe₂O₃

Katalizator ten pracuje w niskiej temperaturze, przy wysokich obciążeniach gazem. Trzeba dodać, że w temperaturach powyżej 400°C zachodzi utlenianie NH₃ do NO_x. Temperaturowy zakres pracy tego katalizatora wynosi $100 \le t \le 400^{\circ} C$. Może być stosowany do oczyszczania gazów nie zawierających tlenków siarki.

Na bazie MnO_2 otrzymano również aktywne katalizatory metodą zol-żel. Wyniki przedstawiono na przykładzie katalizatora płaszczowo-rdzeniowego 5% MnO_2/TiO_2 . Na rys. 5 przedstawiono uzyskane zależności stopnia przemiany NO_x od temperatury i od obciążenia.

Rys. 5. Zależność stopnia redukcji NO_x na katalizatorze MnO_2/TiO_2 od temperatury i obciążenia; 1 – 53,4 m³/(kg h); c_{NOx} 1529-4902 ppm, 2 – 106,8 m³/(kg h); c_{NOx} 2143-4921 ppm, 3 – 178 m³/(kg h); c_{NOx} 1724-4336 ppm

Katalizator ten pracuje przy wysokich obciążeniach w niskiej temperaturze. Na rys. 6 przedstawiono wyniki otrzymane na katalizatorze płaszczowo-rdzeniowym 12%V₂O₅/TiO₂, przy wysokich obciążeniach gazem, wynoszących 106,7 i 178 m³/(kg h).

Rys. 6. SCRNO_x na katalizatorze $12\% V_2O_5/TiO_2 w$ zależności od obciążenia: $1 - 106.8 \text{ m}^3/(\text{kg h}), 2 - 178 \text{ m}^3/(\text{kg h})$

Katalizator ten pracuje w nieco wyższej temperaturze niż katalizatory otrzymane na bazie MnO₂. Jest natomiast odporny na działanie tlenków siarki. Trzeba dodać, że katalizatory wanadowo-tytanowe są stosowane w instalacjach przemysłowych.

3.2.2. Spalanie LZO

Aktywność otrzymanych katalizatorów w procesie spalania wybranych LZO wyznaczono także w przepływowym mikroreaktorze rurowym. Masa próbek katalizatora wynosiła 0,5 g, a wielkość cząstek była rzędu 0,102-0,120 mm. Przepływ gazu był równy 20 dm³/h.

Na rys. 7 pokazano zależność stopnia przemiany acetonu (domieszka modelowa) od temperatury dla różnych katalizatorów. Podczas pomiarów stężenie acetonu na wlocie do reaktora zmieniało się w zakresie 3,48-6,9 g/m³.

Rys. 7. Zależność stopnia przemiany acetonu od temperatury dla różnych katalizatorów: 1-55% MnO₂+45% CuO, 2-65% MnO₂+35% CuO, 3-45% MnO₂+55% CuO, 4-60% MnO₂+40% Fe₂O₃, 5-65% MnO₂+35% Fe₂O₃

Na rys. 8 przedstawiono zależność stopnia przemiany α od T otrzymane podczas spalania różnych domieszek na katalizatorze 60% mas. MnO₂+40% mas. CuO. Pomiary przeprowadzono przy przepływie gazu wynoszącym 20 dm³/h. Dla porównania naniesiono zależność α od T dla procesu spalania m-ksylenu na katalizatorze platynowym Pt-p.

Rys. 8. Zależność stopnia przemiany wybranych domieszek od temperatury dla katalizatora 60% MnO₂+40% CuO i Pt-p; 1 – aceton ($c_0 = 0.68$ g/m³), 2 – octan n-butylu ($c_0 = 16.72$ g/m³), 3 – toluen ($c_0 = 5.2$ g/m³), 4 – p-ksylen ($c_0 = 8.45$ g/m³), 5 – m-ksylen ($c_0 = 7.96$ g/m³), katalizator Pt-p.

Na katalizatorze 60%MnO₂+40%CuO związki alifatyczne spalały się w niższej temperaturze niż związki aromatyczne. Katalizator platynowy Pt-p okazał się znacznie mniej aktywny niż katalizatory tlenkowe.

4. Podsumowanie

Przedstawiono wyniki badań katalizatorów procesu SCRNO_x i procesów spalania wybranych związków organicznych. Katalizatory na bazie MnO₂ w postaci kompozytów z CuO, Fe₂O₃ i TiO₂ w procesie SCRNO_x pracują przy wysokich obciążeniach w zakresie temperatur 100-400°C. Natomiast katalizatory V₂O₅/TiO₂ pracują w nieco wyższej temperaturze, ale są odporne na działanie związków siarki. Spalanie LZO na katalizatorach MnO₂+CuO przebiega w niskiej temperaturze. Mniej aktywne były katalizatory MnO₂+Fe₂O₃.

Katalizatory manganowo-miedziowe i manganowo-żelazowe otrzymano metodą współstrącania, natomiast katalizatory MnO₂/TiO₂ i V₂O₅/TiO₂ metodą zol-żel. Próbki po odsączeniu i przemyciu wysuszono, a potem kalcynowano w 400°C przez 1 h. Próbki po kalcynacji rozdrobniono, dodano 0,5% mas grafitu i tabletkowano.

Próbki otrzymane metodą współstrącania, po kalcynacji miały strukturę amorficzną. Natomiast w próbkach osadzonych na TiO₂ składniki po kalcynacji występowały w postaci nanokrystalicznej. Warunki kalcynacji ustalono na podstawie badań termograwimetrycznych. Strukturę fazową próbek określono metodą XRD. Aktywność katalizatorów badano stosując przepływowe mikroreaktory rurowe.

Praca została wykonana w ramach projektu badawczego NCB i R Nr 14011610.

Literatura

- 1. Konieczyński J.: Oczyszczanie gazów odlotowych . Wydawnictwo Politechniki Śląskiej, Giwice1993
- Chen H.L., Lee H.M., Chen S. H., Chang M.B., Yu S.J., Li S.N.: Removal of Volatile Organic Compounds by Single-Stage Two-Stage Plasma Catalyst System. A Review of the Performance Environment Mechanisms, Current Status and Suitable Applications. Environ. Sci. Technol., 2009, Vol. 43, 2216-2227
- 3. Jiang B.Q., Wu Z. B.: Low temperature selective catalytic reduction of NO on MnO₂/TiO₂ prepared by different methods. J. Hazard. Mater., 2002, Vol.145, 488-494
- 4. Tang X., Hao J., Xu W., Li J.: Low temperature selective catalytic reduction of NO_x witch NH_3 over amorphous catalyst prepared by three methods. Catal. Commun., 2007, Vol. 8, 329-334
- 5. Qi G., Yang R.T.: Low temperature selective catalytic reduction of Fe-Mn based transition metal oxides with NH₃ over iron and manganese oxides supported on titania. Appl. Catal.B, 2000, Vol. 44, 217-225
- 6. Keshmir M., Mohseni M., Troczyński T.: Development of novel TiO₂ sol-gel derived composite and its photocatalytic activities for trichloroethylene oxidation. Appl. Catal.B, 2004, Vol. 53, 209-219
- Wu Z.B., Jiang B. Q., Liu Y., Zhao W. R., Guan B. H.: Experimental study on a low temperature SCR catalyst based on MnO_x/TiO₂ prepared by sol-gel method. J. Hazard. Mater., 2007, Vol. 145, 119-126
- Bukhtiyarowa M. V., Ivanowa A. S., Plyasowa L.M., Litvak G.S., Rogov V.A., Kaichew V.V.: Selective catalytic reduction of nitrogen oxide by ammonia on Mn(Fe) – substitued Sr(La) aluminates. Applied. Catalysis A: General, 2009, Vol. 357 (2), 193-205
- Liu F.D., He. H., Zhang C.B.: Novel iron titanate catalyst for the selective reduction of NO with NH₃ in the medium temperature range. Chem. Commun., 2008, Vol. 17 2043-2045
- Mutin R., Popa A. F., Vioux A., Delahay G., Coq B.: Nonhydrolitic vanadie- titania xerogels . Synthesis, characterization and behavior in the selective catalytic reduction of NO_x by NH₃. Appl. Catal., B: Environmental, 2006, Vol.69, 49-57
- 11. Straszko J., Kalisiak B.: Selektywna katalityczna redukcja tlenków azotu. Przem. Chem., 1988, Vol. 7, 323-326
- Lou J.Ch., Yang H.W., Lin C.H.: Preparing Copper/Manganese Catalyst bay Sol-Gel Process for Catalytic Incineration of VOCs. Aerosol and Air Quality Research, 2009, Vol. 239, 87-94
- Li W.B., Chu W. B., Zhuang M., Hua J.: Catalytic Oxidation of Toluene on Mn-Containing Mixed Oxides Prepared in Reverse Micro emulsions . Catal. Today, 2004, Vol. 93-95, 205-209
- Debeker D.P., Bouchmela K., Delaigle R., Eloy P., Polennis C., Bertrand P., Gaigneoux E. M., Mutin P.H: One-step non- hydrolytic sol-gel preparation of efficient V₂O₅- TiO₂ catalysts for VOC total oxidation. Appl. Catal. B: Environmental, 2010, Vol. 96, 38-45
- 15. Bertinchamps F., Treinen M., Eloy P., Dos Santos A., M., Mestdahg M. M., Gaigneaux E.M.: Understanding the activation mechanism induced by NO_x on the performances of VO_x/ TO₂ based catalysts in the total oxidation of chlorinated VOCs. Appl. Catal.B: Environmental, 2007, Vol. 70,360-369

- 16. Barbero B.P., Costa-Almeida L., Morales M.R., Cadus M., Montes L,E.: Washcoating of metallic monoliths with a MnCu catalyst for catalytic combustion of volatile organic compounds. Chem. Eng. J., 2008, Vol. 139, 430-435
- Larson P.O., and Anderson A.: Oxides of Copper. Promoted Copper, Manganese and Copper Manganese on Al₂O₃ for the Combustions of CO, Ethyl Acetate and Ethanol. Appl.Catal. B: Environmental, 2000, Vol. 24, 175-192
- Arroyo R., Cordoba G., Padilla J., Lara V.H.: Influence of manganese ions on the anatase – rutile phase transition of TiO₂ prepared by the sol-gel process. Mat. Lett., 2002 Vol. 54, 397-402
- 19. Ivanowa T., Harizanowa A.: Characterization of TiO₂ and TiO₂-MnO oxides prepared by sol-gel method. Solid State Ionics, 2001, Vol. 138, 227-232
- 20. Moreles M. R., Barbero B.P., Lopez T., Cadus L.E., Moreng H.: Evoluantion and characterization of Mn-Cu mixed oxide catalyst supported on TiO_2 and ZrO_2 for ethanol total oxidation. Fuel, 2009, Vol. 88,2120-2129
- 21. Parus W., Paterkowski W.: Spalanie domieszki octanu etylu w powietrzu na katalizatorach tlenkowych. Przem. Chem., Vol. 90 (7), 574-579
- 22. Sabara M., Biedunkiewicz A.: Analiza procesu syntezy Mo₂C w układach (NH₄)6Mo ₇ 4H₂O –węgiel aktywny. Inżynieria Materiałowa, 2011,Vol. 29182, 699-703
- 23. Biedunkiewicz A., Gabriel U., Figiel P., Sabara M.: Investigation on NH₄VO₃ thermal decomposition in dry air. J. Therm. Anal. Calorim., DOI 10.1007/s10973-011-2149-6